
ESROCOS: DEVELOPMENT AND VALIDATION OF A SPACE ROBOTICS

FRAMEWORK

Miguel Muñoz Arancón (1), Malte Wirkus(2), Killian Hoeflinger(3), Nikolaos Tsiogkas(4), Saddek Bensalem(5)

Olli Rantanen(6), Daniel Silveira (7), Jérôme Hugues (8), Mark Shilton (9), Herman Bruyninckx (10)

(1) GMV Aerospace and Defence, Isaac Newton 11 PTM, Tres Cantos, 28760 Madrid, Spain, mmunoz@gmv.com
(2) Deutsches Forschungszentrum für Künstliche Intelligenz GmbH - Robotics Innovation Center, Robert-Hooke-Straße

1, 28539 Bremen, Germany, malte.wirkus@dfki.de
(3) Deutsches Zentrum für Luft - und Raumfahrt Ev, Linder Höhe, 51147 Köln, Germany, kilian.hoeflinger@dlr.de

(4) Intermodalics BVBA, Gaston Geenslaan 9, 3001 Leuven, Belgium, nikolaos.tsiogkas@intermodalics.eu
(5) Universite Grenoble Alpes, 700 Avenue Centrale, 38401 Saint Martin d’Heres, France – saddek.bensalem@univ-

grenoble-alpes.fr
(6) VTT Technical Research Centre of Finland Ltd., Visiokatu 4, 33720 Tampere, Finland, olli.rantanen@vtt.fi

(7) GMVIS Skysoft SA, Av. D.Joao II Lote 1.17.02, Torre Fernao Magalhaes 7°, 1998025 Lisboa, Portugal,

daniel.silveira@gmv.com
(7) Institut Superieur de l'Aeronautique et de l'Espace, Avenue Edouard Belin 10, 31055 Toulouse, France,

jerome.hugues@isae-supaero.fr
(8) Airbus Defence and Space Ltd, Gunnels Wood Road, SG1 2AS Stevenage, United Kingdom,

mark.shilton@airbus.com
 (10) Katholieke Universiteit Leuven, Oude Markt 13, 3000 Leuven, Belgium, herman.bruyninckx@kuleuven.be

ABSTRACT

The H2020 ESROCOS project has built an open-source

framework for the development of space robotics

software. The ESROCOS framework provides a model-

based engineering approach and a collaborative

development process. It integrates proven and new

technologies, providing modelling and verification tools

as well as reusable components that facilitate the

production of high-quality robot control software. While

other robotics frameworks exist, ESROCOS is designed

from the ground up to fulfil the needs of the space

robotics community, which requires sound software

engineering processes. This paper presents the outcomes

of the ESROCOS project, the evaluation activities

performed in three case studies (on-orbit servicing,

planetary exploration and nuclear industry), and the

results of this evaluation.

1 INTRODUCTION

The development of software for robotic systems has

become easier with the emergence of robotics

frameworks, with ROS, the “Robot Operating System”

[1], being the most popular among them. The term

Robot Control Operating System (RCOS) has evolved,

describing frameworks like ROS and others with a

similar aim, such as OROCOS [2], GenoM [3], ROCK

[4] and CLARAty [5]. It can be defined as a framework

for the development of robotics applications that may

provide a component model, a runtime environment and

a set of tools and reusable components to build robotics

software. An RCOS allows the user to easily combine

generic and application-specific components to build

applications, and provides tools to support development

and testing.

The RCOS has become an essential tool in robotics

research and in industry. The standardization of

components and interfaces through a component model,

together with the use of common tools and practices,

fosters a software ecosystem that facilitates the

development of applications. However, existing RCOS

are not suitable for critical applications with stringent

Reliability, Availability, Maintainability and Safety

(RAMS) requirements. It is not feasible to modify an

existing RCOS to comply with the requirements of

critical software development. Therefore, to leverage

the benefits of the RCOS concept in critical domains,

specifically developed frameworks are needed. Yet, past

efforts to develop a standard robot control software at

ESA failed to be adopted by the community, even if they

achieved their immediate technical objectives.

To address the issues that prevented a wider adoption,

the PERASPERA project (Plan European Roadmap and

Activities for Space Exploitation of Robotics and

Autonomy) [6] identified the need for an open-source

RCOS as one of the “building blocks” to be produced in

the frame of the first call of activities of the H2020

Space Robotics Technologies Strategic Research

Cluster (SRC). The ESROCOS project [7] was selected

to develop this building block, and it has aimed to

answer the aforementioned needs by:

 Developing an RCOS specifically designed for

space software processes and technologies.

mailto:mmunoz@gmv.com
mailto:malte.wirkus@dfki.de
mailto:kilian.hoeflinger@dlr.de
mailto:nikolaos.tsiogkas@intermodalics.eu
mailto:saddek.bensalem@univ-grenoble-alpes.fr
mailto:saddek.bensalem@univ-grenoble-alpes.fr
mailto:olli.rantanen@vtt.fi
mailto:daniel.silveira@gmv.com
mailto:jerome.hugues@isae-supaero.fr
mailto:mark.shilton@airbus.com
mailto:herman.bruyninckx@kuleuven.be

 Integrating advanced modelling technologies to

support the design and verification of the

architectural and behavioural properties of the

system from the early stages.

 Focusing on the space robotics community,

addressing their needs and use cases.

 Coping with the complexity of robotics

applications, both at development and at execution

time.

 Avoiding proprietary solutions and vendor lock-in

by using open-source licenses.

 Leveraging existing tools and reusable

components, benefiting from their maturity and

user base.

 Exploring the needs of other domains with

stringent RAMS requirements, such as nuclear

robotics.

The ESROCOS project was executed by a consortium of

ten industrial companies and academic institutions led

by GMV, and spanned over 27 months from Nov-2016

to Jan-2019.

The following sections present an overview of the

ESROCOS framework, detail the supported

development approach and the tools and components

provided by the framework, present the evaluation of

ESROCOS on three case studies, and summarize the

status of the framework and the future work.

2 OVERVIEW OF THE ESROCOS

FRAMEWORK

ESROCOS is a framework for developing robot control

software applications. It includes a set of tools that

support different aspects of the development process,

from architectural design to deployment and validation.

In addition, it provides a set of core functions that are

often used in robotics or space applications.

Fig. 1. The ESROCOS Framework.

The ESROCOS framework is intended to support the

development of software following the ECSS standards

for space software. It does not by itself cover all the

development phases and verification steps, but it

facilitates certain activities and ensures that the software

built can be made compatible with the Reliability,

Availability, Maintainability and Safety (RAMS)

requirements of critical systems.

Fig. 1 summarizes the main elements of the ESROCOS

framework. At the top of the figure there are tools for

robot and software modelling. These are supported by

the common data types for component interfacing, basic

libraries for robotics functions, test tools, and

monitoring and control services. The middleware layer

allows for the management and communication of

software components at runtime. Time and space

partitioning capabilities are provided to isolate

application components of at runtime and prevent failure

propagation between components. Finally, the

applications may run laboratory platforms, space-

quality hardware or a combination of both.

The boxes on the sides of the figure represent orthogonal

concerns. Firstly, ESROCOS integrates with third-party

frameworks to leverage existing code and tools.

Secondly, ESROCOS supports a collaborative

development approach based on component reuse.

Finally, the figure highlights that ESROCOS is open-

source and relies on non-proprietary technologies in

order to encourage usage and contributions from the

community.

3 DEVELOPMENT WITH ESROCOS

The requirements of space robotics systems may lead to

complex software and hardware architectures that

combine heterogeneous computer nodes and software

functions. Capabilities such as fast control loops, sensor

data processing, autonomy functions or monitoring and

control, all of which may be needed in a typical

application, have very different requirements. In

addition, the design and validation of the application

often requires specific tools for simulation, data

recording and replaying, or visualization.

The ESROCOS framework provides a heterogeneous

set of tools and reusable components that address

different needs of the robotics applications. The

framework relies on a model-based engineering

approach, and in particular on the TASTE toolchain (see

§ 3.1), to link together the different elements.

The model-based approach was a requirement of the

ESROCOS project. It provides separation of concerns

between the different design aspects and the deployment

details, and enables early formal verification activities

to reduce the amount and impact of design errors.

ESROCOS supports model-based development in two

dimensions:

 Modelling of the robot system, in particular of the

robot kinematics, using the Kin-Gen tool (see

§ 3.3).

 And modelling and validating the software

architecture and behaviour, using TASTE (see

§ 3.1) and BIP (see § 3.2).

In addition, ESROCOS provides an infrastructure to

maintain software implementations divided in a number

of individual packages, where each package can have its

own development cycle. Combined with a set of

common robotics data types for modelling the interfaces

between components, this mechanism allows the user to

easily combine existing and new software blocks to

design an application. By enabling the reuse of

components developed by the community, and

facilitating that newly developed components are

published and contributed back, ESROCOS makes it

possible that a user community of commercial vendors

and open-source projects emerges and supports a lively

software ecosystem around the framework.

The following subsections describe in more detail the

main tools and components provided by the ESROCOS

framework.

3.1 The TASTE Toolchain

TASTE (The ASSERT Set of Tools for Engineering) [8]

is a toolchain developed by the European Space Agency

(ESA) to model heterogeneous real-time distributed

systems. It is the backbone of ESROCOS. At

development time, it allows the user to model the

hardware and software architecture of the system.

The user models the system in TASTE using four views,

each addressing a different aspect of the system:

 Data view: describes the data definitions of the

system using the ASN.1 standard, as well as data

encoding aspects.

 Interface view: models the functional aspects of the

system, structured in components with defined

real-time behaviour and interfaces; it is described

using the AADL standard [9].

 Deployment view: describes the hardware

architecture of the system as a set of nodes and data

buses, and the allocation of software components

and interfaces to these; it is also described with

AADL.

 Concurrency view: generated from the previous

two, this view represents the system in terms of

real-time software artifacts (tasks, subprograms,

etc.), enabling the schedulability analysis of the

system by automated tools and the tuning of

different parameters by the user.

The TASTE editor allows the user to model the system

using these four views, and to validate the model. The

interface and deployment views are edited graphically,

while the data view is textual. From the model, TASTE

generates code using the Ocarina tool. This code

manages the system initialization, task execution and

communication aspects, using the PolyORB-HI

middleware. The user must then provide the

implementation of the individual components. TASTE

supports different languages such as Ada, C, C++, SDL

state machines, VHDL (for supported FPGAs) or

Simulink. TASTE supports several hardware platforms,

including RTEMS on LEON processors and Linux on

x86, and communication links such as TCP/IP and

SpaceWire.

Individual TASTE components can be exported for

reuse in different TASTE applications and deployed to

different architectures and communication buses. The

toolchain thereby takes care of the compilation,

communication and runtime details. To allow the

independent development of compatible software

components, the ESROCOS framework provides a

library of common data types and provides support in

development with specific components, e.g., for

monitoring and control and data visualization (see

§ 3.5).

3.2 The BIP Tools

ESROCOS complements the TASTE modelling

capabilities with BIP (Behaviour, Interaction, Priority)

[10], a formal language for modelling and analysing

heterogeneous real-time systems. The BIP language and

tools go further than TASTE in capturing the behaviour

of the software and the interaction between the

components, allowing for new scalable formal

verification techniques of the system model.

The following BIP tools can be used to support the

modelling and analysis of robotics applications built

with ESROCOS:

 BIP Compiler & Engines: the BIP compiler

generates C++ code that can be linked to different

engines that support model execution and

simulation for analysis.

 iFinder/iChecker: it allows for the verification of

requirements (safety, performance, etc.) on BIP

models.

 Statistical Model Checking (SMC-BIP): it runs a

representative number of simulations and

statistically checks whether a requirement (safety,

performance, etc.) is satisfied.

 FDIR tool: permits the generation of fault

detection and recovery software components that

can be embedded in the target system.

The integration of BIP in ESROCOS is done via an

automated model transformation from TASTE to BIP

models.

3.3 The Kin-Gen Kinematics Modelling Tool

The Kin-Gen tool [11] has been developed within the

ESROCOS project to model the characteristics of the

robotic platform. Kin-Gen allows the user to model the

robot kinematics using an innovative approach based on

model composability. The robot is modelled as a set of

kinematic trees and an arbitrary frame. The model can

be verified with semantic checks. Additionally, custom

solvers can be defined as queries to the model, and code

can be generated for these custom solvers, ensuring

correctness.

The tool provides a complete toolchain for forward and

inverse kinematics. Future evolutions of the tool will

cover other aspects of the robot system and its

environment.

3.4 The AIR Hypervisor

Robotics software must combine functions ranging from

real-time control loops to non-deterministic planning

algorithms, which differ in their criticality level and

execution constraints. This may be an issue for the

development of critical robotics software, which must

satisfy the safe execution of certain critical functions.

The Time and Space Partitioning (TSP) paradigm

consists of separating different applications running on

the same on-board computer by enclosing them in

isolated partitions with their own assigned memory and

processor utilization. The aim is the execution of

applications with different criticality in such a way that

a failure in one cannot affect the others. ESROCOS

includes the AIR hypervisor [12], an ARINC 653 [13]

compliant hypervisor that uses paravirtualisation to

enable the execution of partitioned applications and

supports RTEMS and ARINC 653 APEX as guest

operating systems.

3.5 Support Tools and Components

In addition to the elements described above, the

ESROCOS framework includes other tools and

components to support the development and testing of

space robotics applications.

The most important is a collection of common robotics

data types modelled in ASN.1. These types, derived

from the ROCK and ROS frameworks, represent

common robot and sensor data and allow modelling the

interfaces between reusable components.

In addition, a set of libraries that support common

robotics and space software functionalities are provided.

These libraries are prepared for easy integration in

TASTE applications.

 Transformer: a C++ library to model and compute

at runtime geometric frame transformations.

 Stream Aligner: a C++ library to manage the

synchronization of multiple data streams.

 Data Logger: a C++ library to allow for data

logging and replay to support testing.

 Data Visualization: a C++ library for robot and

sensor data visualization in 3D based on Vizkit3D.

 PUS Library: a missionizable C library that

provides a subset of the ECSS Packet Utilization

Standard (PUS) [14] for monitoring and control of

space assets. The library implements the services

at logical level (the packet encoding uses ASN.1

instead of the standard PUS frames). It includes an

On-Board Control Procedure (OBCP) engine

based on MicroPython [15], allowing for the

simultaneous execution of several OBCPs that can

interact with the on-board software system.

ESROCOS includes tools for interoperability with the

ROS and ROCK frameworks so that prospective users

can leverage the rich ecosystems existing around these

frameworks as well as their existing software assets. The

aim is to facilitate the transition from the laboratory to

the level of quality and verification demanded by space

systems. To this end, ESROCOS provides:

 Tools to import data type definitions from ROS

and ROCK to the ASN.1 format used by TASTE.

 Tools to generate bridge components that enable

seamless communication between TASTE

functions and ROS or ROCK components running

on a separate middleware environment.

Finally, ESROCOS integrates with external tools and

libraries commonly used in robotics software

development, such as the OpenCV image processing

library, the Eigen linear algebra library, the Gazebo

simulator or the RVIZ data visualization tool.

3.6 Installation of ESROCOS

ESROCOS is available as open-source software in

public repositories (see § 5 below). The framework

relies on the Autoproj tool to manage both the

components of the framework itself and those of the user

application. Each component is hosted in its own

repository and includes a manifest file declaring its

dependencies. The Autoproj tool handles the building

and installation of the framework and the applications

using this information. The fact that the framework and

the user application components are indistinguishable

from each other makes it possible that individual

components can be contributed back to the ESROCOS

ecosystem, and that the users of the framework can

seamlessly mix components provided by the framework,

by other suppliers and by their own organisation.

The installation of ESROCOS creates a workspace

hosting both framework components and user

applications. The setup is organized in three package

sets that define the components available in the

workspace:

 Core: the components provided by the framework.

 External: existing tools and libraries that the core

components depend on.

 Universe: contributed packages (drivers,

algorithms, etc.) contributed by third parties.

As an ecosystem develops around the ESROCOS

framework, the Universe package set will be extended

with new capabilities and functions that can be reused in

new applications.

4 CASE STUDIES

The validation in the space reference scenarios took

place in two test facilities provided by the H2020

FACILITATORS project [16] in the frame of the Space

Robotics Technologies SRC. In addition, the Finnish

Technology Research Centre VTT was part of the

project consortium and provided a nuclear robotics test

facility to perform a case study based on a terrestrial

application.

The ESROCOS framework was evaluated in three case

studies by developing representative applications

targeting on-orbit satellite servicing, planetary

exploration and nuclear robotics. The focus of the

evaluation was the production and testing of a set of

robotics applications that exercise the different elements

of ESROCOS.

The reference applications addressed the functional

layer of the robotics systems, specifically for a rover and

two manipulator arms. The aim of the tests was not to

build fully autonomous systems, but to demonstrate the

software capabilities that will allow to do so in the

future, considering that the future activities of the Space

Robotics Technologies SRC will integrate other

building blocks providing higher level functions, such as

data fusion and autonomy.

4.1 Planetary Scenario

The planetary exploration scenario was demonstrated

using the BRIDGET rover in Airbus DS Mars Yard

facility at Stevenage (UK). The tests included the tele-

operation of the rover, logging and replay capabilities

and control of a CAN device. As in the orbital scenario,

both laboratory (Linux PC) and space-representative

(GR740) hardware were used.

Fig. 2. Testing in the planetary exploration reference

scenario: BRIDGET rover in the Marys Yard facility.

The case study consisted of four test cases. For each of

them, an application was modelled with TASTE and

implemented using the different components provided

by the framework. The test cases addressed:

 Rover teleoperation and control.

 Rover trajectory data logging and replay.

 CAN bus device management.

 Integration of data processing functions.

The test campaign demonstrated the functionality of the

software modules Stream Aligner, Data Logger,

Transformer, as well as the possibility to use BIP for

modelling and executing safety routines for robotic

systems.

4.2 Orbital Scenario

The on-orbit satellite servicing scenario was

demonstrated at GMV’s platform-art facility in Tres

Cantos (Spain). The tests consisted in the teleoperation

of an UR-5 manipulator with a camera as end effector to

inspect a satellite mock-up. Different variants of the

scenario were tested, including simulation aspects and

targeting laboratory-type hardware (Linux PC) and

space-representative avionics (GR740 board running

RTEMS).

Fig. 3. Testing in the on-orbit servicing reference scenario:

UR-5 manipulator and satellite mock-up in GMV’s robotics

laboratory.

The case study consisted of four test cases with their

respective ESROCOS applications:

 Control of the manipulator on simulation, using a

laboratory platform (Linux on x86).

 Control of the actual manipulator and camera using

a laboratory platform (Linux on x86).

 Control of the actual manipulator using space-

representative hardware (GR740 board running

RTEMS) and SpaceWire data bus.

 EtherCAT driver testing (however, this test case

could not be performed, see § 4.4).

The test case applications were modelled using TASTE,

BIP and Kin-Gen, and demonstrated the capabilities of

the Data Visualization, integration of the Gazebo

simulator, PUS Services and interoperability with ROS

and ROCK provided by ESROCOS.

4.3 Nuclear Scenario

The nuclear robotics demonstration took place at the

VTT Diverter Test Platform 2 at Tampere (Finland). A

control application for the Cassette Multifunctional

Mover (CMM) robot was developed with ESROCOS

and deployed at the control centre. The CMM robot is a

robotics demonstrator for the ITER experimental fusion

reactor, intended for the replacement of the elements

that compose the bottom part, so called divertor, of the

toroidal enclosure of the reactor.

Fig. 4. Testing in the nuclear robotics scenario: CMM robot

in the DTP2 facility at VTT.

The case study included two test cases with their

respective ESROCOS applications:

 Manipulator trajectory planning and control using

interpolation in Cartesian space.

 Manipulator trajectory planning and control using

interpolation in joints space.

Both applications ran on laboratory hardware (Linux on

x86) and interacted with the CMM controller through an

UDP bus. The applications were modelled in TASTE

and included a kinematic solver generated with Kin-

Gen. The tests also demonstrated the data visualization

functionality and the integration with the Gazebo

simulator.

4.4 Test Results, Constraints and Limitations

The results of the evaluation of ESROCOS have been in

general satisfactory, proving that the framework is

functional and useful to support the development of

space robotics applications following a sound

modelling, implementation and verification approach.

Nevertheless, not all the technical objectives of the

project have been achieved, and the case studies have

shown some limitations that should be taken into

account by prospective users of the system:

 The installation of the ESROCOS framework is

not fully managed by Autoproj, and some

dependencies and components need to be manually

installed.

 The TASTE toolchain has some limitations for

large application models, exhibiting excessive

memory usage and long build times.

 The driver configuration in TASTE is complex,

with some elements configured at model level and

some others at middleware source code level.

 The transformation of TASTE models to BIP is

partially automated, and some concepts in the

deployment view must be manually modelled.

 The integration of the AIR hypervisor in TASTE is

not complete, and currently it is not possible to

generate code for models that combine AIR and

other types of hardware nodes.

 The SOEM EtherCAT driver could not be ported

to the GR740 board selected as space-

representative avionics board due to the use of a

deprecated network stack in RTEMS for LEON4.

 The ESROCOS runtime components have not been

verified to the level required by flight software in

terms of unit testing, coding rules or code review.

Despite these shortcomings, the results of the validation

of ESROCOS have been positive, and the framework is

usable in its current state to support the development and

verification of robotics applications.

5 STATUS AND FUTURE WORK

The ESROCOS project was successfully completed in

January 2019. The public results from the project,

including the open-source software, can be found at the

project’s website [17] and GitHub page [18]. The

evolution of ESROCOS continues in the second phase

of the Space Robotics Technologies SRC that will use

and extend the framework to support the development of

several application demonstrators. The H2020 MOSAR

project, in particular, is in charge of the maintenance of

the ESROCOS building block during this phase of the

SRC, coordinating the corrections and extensions of the

framework in the different projects.

In addition to the usage and maintenance foreseen

within the SRC, the fact that ESROCOS is based on

technologies that have a trajectory outside the project

will also contribute to the success of the platform. The

ESROCOS framework may benefit from the further

development of its constituent tools, and likewise

improvements in the framework may reflect on the tools,

creating a live ecosystem.

6 CONCLUSION

The ESROCOS project has developed a robotics

framework that addresses the needs of the space robotics

community. The framework was validated by

developing robotic applications for three reference

scenarios: on-orbit servicing, planetary exploration and

nuclear robotics. The resulting RCOS will be used as a

building block in future Space Robotics Technologies

SRC activities, and is available for wider use by the

community under open-source licenses.

7 REFERENCES

1. Quigley, M., Gerkey, B., Conley, K., Faust, J.,

Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.

(2009, May). ROS: an open-source Robot

Operating System. ICRA workshop on open source

software, Vol. 3, No. 3.2, p. 5.

2. Bruyninckx, H. (2001). Open robot control software:

the OROCOS project. IEEE International

Conference on Robotics and Automation (ICRA).

Vol. 3, pp. 2523-2528. IEEE.

3. Ceballos, A., De Silva, L., Herrb, M., Ingrand, F.,

Mallet, A., Medina, A., & Prieto, M. (2011).

GenoM as a Robotics Framework for Planetary

Rover Surface Operations. 11th Symposium on

Advanced Space Technologies in Robotics and

Automation (ASTRA). ESA.

4. The Robot Construction Kit (ROCK). Online at:

http://rock-robotics.org.

5. Nesnas, I. A. (2007, June). CLARAty: A

collaborative software for advancing robotic

technologies. Proceedings of NASA Science and

Technology Conference. Vol. 2. NASA.

6. PERASPERA (Plan European Roadmap and

Activities for Space Exploitation of Robotics and

Autonomy). Online at: https://www.h2020-

peraspera.eu/.

7. Muñoz Arancón, M., Montano, G., Wirkus, M.,

Hoeflinger, K., Silveira, D., Tsiogkas, N., Hugues,

J., Bruyninckx, H., Dragomir, I., Muhammad, A.

(2017). ESROCOS: A robotic operating system for

space and terrestrial applications. 14th Symposium

on Advanced Space Technologies in Robotics and

Automation (ASTRA). ESA.

8. Perrotin, M., Conquet, E., Dissaux, P., Tsiodras, T.,

& Hugues, J. (2010). The TASTE Toolset: turning

human designed heterogeneous systems into

computer built homogeneous software. Embedded

Real Time Software and Systems (ERTS2).

9. Architecture Analysis & Design Language (AADL).

(2017). SAE International. AS5506C.

10. Basu, A., Bozga, M., & Sifakis, J. (October 2016).

Modeling Heterogeneous Real-Time Components

in BIP. Fourth IEEE conference on Software

Engineering and Formal Methods (SEFM), pp. 3-

12. IEEE.

11. Frigerio, M., Scioni, E., Pazderski, P., &

Bruyninckx, H. (2019). Code generation from

declarative models of robotics solvers. Third IEEE

International Conference on Robotic Computing

(IRC), pp. 369-372. IEEE.

12. The AIR Hypervisor. GMV. Online at:

http://www.gmv.com/en/Products/air/.

http://rock-robotics.org/
https://www.h2020-peraspera.eu/
https://www.h2020-peraspera.eu/
http://www.gmv.com/en/Products/air/

13. RTCA. (October, 2019). ARINC653, Arinc

Specification 653-1. Avionics Application

Software Standard Interface. RTCA.

14. Space Engineering: Telemetry and Telecommand

Packet Utilization. ECSS-E-70-41C (April 15,

2016). European Cooperation for Space

Standardization (ECSS).

15. MicroPython. Online at: https://micropython.org/.

16. H2020 FACILITATORS project: Facilities for

Testing Orbital and Surface Robotics Building

Blocks. Online at: https://www.h2020-

facilitators.eu/.

17. The ESROCOS project: European Space Robotics

Control and Operating System. Online at:

https://www.h2020-esrocos.eu/.

18. ESROCOS at GigHub. Online at:

https://github.com/ESROCOS.

ACKNOWLEDGMENTS

We would like to thank the European Commission and

the members of the PERASPERA programme support

activity (ESA as coordinator, ASI, CDTI, CNES, DLR,

and UKSA) for their support and guidance in the

ESROCOS activity. We also thank all the participants in

the ESROCOS project for their contributions to the

results presented here.

This project has received funding from the European

Union´s HORIZON 2020 research and innovation

programme under grant agreement No 730080.

https://micropython.org/
https://www.h2020-facilitators.eu/
https://www.h2020-facilitators.eu/
https://www.h2020-esrocos.eu/
https://github.com/ESROCOS

	1 Introduction
	2 Overview of the ESROCOS Framework
	3 Development with ESROCOS
	3.1 The TASTE Toolchain
	3.2 The BIP Tools
	3.3 The Kin-Gen Kinematics Modelling Tool
	3.4 The AIR Hypervisor
	3.5 Support Tools and Components
	3.6 Installation of ESROCOS

	4 Case Studies
	4.1 Planetary Scenario
	4.2 Orbital Scenario
	4.3 Nuclear Scenario
	4.4 Test Results, Constraints and Limitations

	5 Status and Future Work
	6 Conclusion
	7 REFERENCES

