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Abstract—Autonomous Underwater Vehicles (AUVs) are a
useful tool for science and industry. They significantly reduce
the risk to humans in operations in hazardous and high cost
situations. The use of multiple AUVs can enhance the operational
capabilities by introducing specialisation of AUV capabilities and
parallelising task execution. The coordination of the multi-AUV
team requires communication among its members. Underwater
communications are low bandwidth, high latency and error
prone. This paper studies different task allocation strategies
for an underwater archaeological inspection scenario under
communication constraints. Three different distributed methods
are implemented and compared in simulation. The first is a greedy
allocation method used as a baseline for comparison. The second
is a k-Means based formulation aiming to balance the load among
the robots. The third is the linear programming formulation of
the multiple travelling salesmen problem. Results are analysed in
the scope of mission completion time and the distance travelled
by the robots. Results indicate that the k-Means method performs
better when communication error rates are lower, while the mTSP
method performs better when communication error rates are
higher.

I. INTRODUCTION

Scientific advances in the field of robotics have allowed the
use of robotic teams to solve complex real-life problems. The
use of autonomous robots facilitates the execution of tasks that
were previously dangerous, expensive or time consuming when
performed by humans. It has also enabled tasks that cannot
be performed by humans. One environment that combines all
the previous characteristics is the underwater environment, as
humans are not naturally fit for that environment.

In particular, this paper focuses in the field of underwater
archaeology. As described in [1], an archaeological exploration
mission requires the successful cooperation of a heterogeneous
fleet of autonomous underwater vehicles (AUVs). Specifically,
the fleet is composed by two vehicle types. The first type is a
fast vehicle capable of mapping an area and detecting potential
archaeological artefacts called the search AUV (SAUV). The
second type is a hover capable, but potentially slower vehicle,
which is able to inspect and classify targets of interest. This
vehicle is called the inspection AUV (IAUV). In the underwa-
ter archaeology scenario, the vehicles should map a given area
and then search and inspect objects of archaeological interest.
The coordination of the vehicles is enabled by using acoustic
communications which are known to be lossy, low bandwidth
and high latency [2], [3], [4].

This paper studies efficient ways to complete the afore-
mentioned mission. Efficiency is studied from two different

perspectives, namely, time and energy efficiency. Time effi-
ciency studies the total time required to perform a mission.
It is important as it allows more missions to be executed in
a single day. The energy efficiency is achieved by trying to
minimise the distance the vehicles have to travel in order to
explore and inspect archaeological artefacts. Energy efficiency
enables the execution of longer missions. To achieve the
required efficiency two different methods are implemented
and compared in a simulated environment. The first method
is a k-Means based method described in [5]. The second
method utilises the linear programming formulation of the
multiple travelling salesmen problem (mTSP). Both methods
are compared against a greedy method. Regarding the dis-
tance efficiency, the k-Means method performs better on low
communications error rates. In higher error rates the mTSP
approach produces better results. The baseline greedy method
shows a consistent performance close to the other two methods.
From the scope of time efficiency, the k-Means consistently
produces the best results maximising the robot utilisation.
The mTSP method follows closely, while the greedy method
requires much more time for mission execution.

The rest of the paper is organised as follows. Section II de-
scribes the related work with the current research. In section III
the methods implemented and tested are presented. Section IV
analyses the simulation setup used to evaluate the different
methods. In section V the results of the simulation evaluation
are presented and discussed. Finally, in section VI the paper
concludes, proposing possible future research directions.

II. RELATED WORK

The multi-robot task allocation (MRTA) problem has been
actively researched in the past years. The first formal taxonomy
is presented in [6]. In that study the problem is categorised
using three different metrics. The first metric considers the
robot type and whether it can complete multiple tasks in
parallel or not. The second metric is about the task type.
It refers to tasks that can be completed by one robot and
tasks that require more. Finally, in the third metric tasks
are classified based on their allocation type. It can be either
instantaneous assignment, where future allocations are not
considered, or time extended assignment, where future tasks
have to be considered in a schedule.

Building on [6], the work presented in [7] further refines
the MRTA problem by presenting a two level taxonomy. The
first level is one dimensional and categorises the task allocation
based on the interdependence of the agent-task utilities. In this
way the task allocation problem is categorised based on how



coupled it is, and thus how difficult is to solve. For this first
level four different categories are defined, namely, tasks with
no dependencies, with in-schedule dependencies, with cross-
schedule dependencies and with complex dependencies. The
second level is optional and it uses the taxonomy proposed
in [6] to provide more information regarding the problem.

In [8] MRTA is considered as a sub-problem of the general
distributed intelligence problem. In the same work a categori-
sation based on the interactions among the team members is
attempted.

Several examples of applications of multi-robot systems
can be found in the literature. In [9] multi-robot exploration
and mapping is performed. The system presented there is
a centralised system. Exploration is performed by frontier
search and the maximisation of a utility function. In [10] the
extension of the aforementioned paper is presented. In that
case the information gain of the robot traversing a path is
used to calculate the utility for the allocation. Behaviour based
methods have also been used in solving the MRTA problem.
For example in [11] an architecture that matches limited
capability robots to tasks based on their fitness to perform each
task. In [5] a balanced MRTA (BMRTA) is presented. This
approach is using the k-Means machine learning algorithm
to cluster tasks and then allocates them to robots. The work
presented in the current paper builds upon [12] where a
centralised experimental evaluation of the k-Means allocation
was presented.

III. METHODS

As the robotic team is composed of several heterogeneous
members, an efficient method to exchange information is
required. This is achieved by using a distributed world model
architecture which is described in [13]. This architecture allows
efficient communication by transmitting data based on the
information needs of each peer. It also provides mechanisms
that make it robust to communication errors.

For the efficient cooperation, two task assignment strategies
are examined in this paper. The first task assignment strategy
is based on the linear programming formulation of the multiple
travelling salesmen problem (mTSP). The solution of the
mTSP provides optimised solutions to the problem where
many robots have to visit multiple locations. The second is
based on the k-means clustering algorithm. This approach is
used as a faster approximation to the mTSP. Both strategies
are compared against a greedy strategy.

To create a more realistic setting where the methods are
evaluated, it was decided that the targets would be incremen-
tally discovered as the mission progresses. At a user defined
interval a new target is discovered and transmitted to the
inspection vehicles. This is different from what is found in
the classic mTSP literature, where all the targets to be visited
are known a priori. To overcome that, a replanning is triggered
whenever new target information is available.

The task allocation strategies are implemented in a dis-
tributed manner. Each robot will calculate a task allocation
solution based on its local knowledge about the team status
and execute the part that is allocated to it. The fact that the
communications are erroneous can lead to inconsistencies of

the knowledge between the agents. This can lead to different
allocations and thus different performance.

A. Greedy task allocation

In the greedy task allocation strategy the targets are as-
signed taking into consideration only the distance of that target
from each candidate AUV. Whenever a new target is discovered
the distance from each robot is calculated. Then the target is
assigned to the robot currently closest to the target.

B. k-Means task allocation

The k-means based task allocation strategy tries to take
advantage of the spatial proximity of the targets to be in-
spected. The k-means algorithm, as presented in [14], provides
a method of clustering a set of observations based on a distance
metric. Given a set of n observations X ∈ Rd, the algorithm
tries to partition these observations into k sets with k ≤ n.
It is achieved by choosing k mid-points M that minimize the
potential function,

φ =
∑
x∈X

min
m∈M

‖x−m‖2

The algorithm is simple and can be seen in the following
listing:

1) Randomly choose k centres M = (m1, ...,mk).
2) For each i ∈ (1, ..., k), calculate the points of X that

are closer to mi than mj for all i 6= j, and assign
them to cluster Mi.

3) For each i ∈ (1, ..., k), set mi as the center of mass
of points in Mi.

4) Repeat steps 2 and 3 until M not changes.

In the case of task allocation studied in this paper k is set
to be equal to the number of IAUVs, thus creating one cluster
per IAUV. Whenever a new target is detected the clustering
algorithm clusters all the unclassified targets. Each cluster is
then assigned to the IAUV that is closest to the mid-point of
the cluster. Finally each IAUV solves a simple and fast TSP
instance to obtain the optimal way to visit the targets within
a cluster. In this paper the k-means++ algorithm is used, as
presented in [15]. An example of the k-means algorithm can
be seen in figure 1.

C. mTSP task allocation

The multiple travelling salesmen problem, described in
[16], is an extension to the classic travelling salesman problem,
where the aim is to find the shortest route to traverse a set of
waypoints. In the mTSP there are many salesmen, and thus
a set of routes that minimise the total cost of travelling are
generated. The aim of the mTSP is to minimise the objective
function: ∑

(i,j)∈A

cijxij

The sum describes the total cost of traversing all the waypoints,
where cij is the cost of travelling from waypoint i to waypoint
j and xij is a binary variable denoting the existence of a path
between the two waypoints in a proposed solution. A is a set
of arcs that connect the waypoints.
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Fig. 1. Clustering of 100 2-d observations in five clusters using the k-means
algorithm. The stars represent the k centres and the data points are coloured
the same as their respective centre of mass.

The rest of the linear programming formulation is the
following:

s.t.

n∑
j=2

x1j = m, (1)

n∑
j=2

xj1 = m, (2)

n∑
i=1

xij = 1, j = 2, ..., n (3)

n∑
j=1

xij = 1, i = 2, ..., n (4)

ui + (L− 2)x1i − xi1 ≤ L− 1, i = 2, ..., n (5)

ui + x1i + (2 +K)xi1 ≥ 2, i = 2, ..., n (6)

x1i + xi1 ≤ 1, i = 2, ..., n (7)

ui − uj + Lxij + (L− 2)xji ≤ L− 1, 2 ≤ i 6= j ≤ n (8)

xij ∈ 0, 1,∀(i, j) ∈ A.

Constraints 1 and 2 ensure that the number of routes created
are equal to the number of salesmen. Constraints 3 and 4 allow
each target to be visited by only one salesman. Constraints 5
and 6 are used to enforce the minimum and the maximum
number of targets that each salesman can visit. The minimum
and maximum number of targets is user tunable and is given
in L and K. Constraint 7 prevents the salesmen to travel to
only one target. Finally, constraint 8 is a subtour elimination
constraint preventing the creation of disconnected subtours. A
solution of a simple mTSP problem can be seen in figure 2.
The linear programming problem is solved by the GUROBI
software [17].

Whenever new target information is received an allocation
procedure over the remaining unclassified targets is triggered.
The mTSP requires the robots to start from the origin. While
the mission is performed the robots will be in different
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Fig. 2. mTSP solution of six cities and two salesmen. The two salesmen must
start and return to the same place. Each city is visited by only one salesman.

positions, but for allocation purposes it is assumed that they are
at the origin. The mTSP produces a number of paths that equals
the number of robots. To assign a path to a robot the midpoint
of the targets belonging to each path is calculated. Then each
robot is assigned its closest midpoint. The targets are then
ordered using a standard TSP algorithm based on the robot’s
current position. In cases where the targets to be assigned are
less than the robots a greedy allocation is performed.

IV. EXPERIMENTAL SETUP

Experiments were conducted using the communications
and navigation simulators developed by the Ocean Systems
Laboratory. The communications simulator is an application
level simulator that allows user-defined error, bandwidth and
latency level in communications. The navigation simulator is a
dynamics simulator using the hydrodynamic model of Nessie
VII AUV [18].

The robots had to perform a simulated archaeological
inspection mission. In that type of mission SAUVs map a
predefined area of interest and search for potential archae-
ological artefacts. Any discovered artefacts are transmitted
to the IAUVs, which in turn perform a reacquisition and
a classification. In the current paper the robotic team was
composed by an SAUV, that was detecting targets, and two
IAUVs, which performed the inspection and classification.

During the mission execution, the phases of detection,
inspection and classification were simulated. The SAUV was
detecting targets that were randomly generated in an area of
100 by 100 meters around it. To ensure the correct evaluation
of the allocation methods ten files with randomly generated
targets were used. Each method is evaluated using the same
target detection pattern. This will make sure that no method is
favoured due to a specific target generation pattern. The target
detection period was one minute. There were 10 different set
of targets aiming to provide better insight to the allocation
schemes and to remove any advantage due to the targets
positions. To simulate the inspection and classification phases
for the IAUVs an inactivity period of 1.5 minute was imposed
whenever they reached a target. An instance of execution can
be seen in figure 3.

Regarding the communications simulation, different packet
error rates were used. Namely, 0%, 20%, 40% and 60% of
packet error rate was selected. The packet size and flight time,



Fig. 3. Mission execution instance. The transparent spheres represent the
vehicles. The green ones are the IAUVs and the blue the SAUV. The solid
spheres are inspection targets. The red are unclassified and the green are
classified. The red and cyan arrows represent the paths followed by the
inspection vehicles.

thus the channel bandwidth, were selected to be 512 bytes and
2 seconds respectively. Finally, the time slot period, used to
check for packet collisions, was set to be 10 seconds.

V. RESULTS

In this section the simulation results are presented. The
results are analysed under the scope of distance and time
efficiency of each method. Distance was chosen as a metric
of energy efficiency, as the less distance the robots have to
travel, the more energy they have to spend on other tasks.
Time efficiency is important regarding the mission execution,
as users of robotic systems expect to have results in a rea-
sonable amount of time. Finally the effect of the erroneous
communications on each task allocation method is studied, as
in real world conditions communications is not perfect and it
is important that the methods are evaluated in such a scenario.

In figure 4, the results of the distance efficiency of each
method are presented. For lower packet error rates the greedy
and the k-Means based methods perform equally well, while
the mTSP one performs on average slightly worse. On the
other hand, when the error rates grow larger the mTSP method
performs better, while the k-Means method underperforms. It is
noteworthy that the greedy method gives good results distance-
wise.

Figure 5 presents the results of the time efficiency of each
method. The k-Means method constantly performs better than
the other methods. This shows that it utilises the robots better.
On the other hand, the greedy method is the one that performs
the worst. The mTSP method performs closely to the k-Means
method.

The utilisation of the robots, as indicated by the time it
takes to complete a mission, explains the differences in the
distance efficiency metric. The greedy method is assigning the
targets to the closest robot and then the targets are visited
in an optimised way provided by the internal TSP solver. In

Fig. 4. Average total distance travelled for different values of packet error
rate. Error bars represent one standard deviation. The greedy method performs
consistently good. The k-Means method is better in lower packet error rates,
while the mTSP performs in higher packet error rates.

Fig. 5. Average total mission time for different values of packet error rate.
Error bars represent one standard deviation. The k-Means method is constantly
giving the best results achieving higher robot utilisation. The mTSP method
is very close to that. The greedy method underperforms as it allows robots to
remain idle.

this way, the number of the targets assigned to each robot
can be unbalanced and one robot may remain idle. Another
issue that the greedy algorithm was facing emerged from the
inconsistencies of the world model of each robot caused by
latent and erroneous communications. There were cases where
the robots had old information regarding the position of each
other and wrongly assigned the target. As the greedy scheme
is not allowing for a reallocation this caused problems with
the mission execution specially in high packet error rates. The
solution to that was to set a timer of the expected end of
the mission with the current information. If this timer expired
and the mission was not finished then a total reallocation
was taking place. The k-Means and mTSP have an increased
utilisation of the robotic team and achieve much better mission
execution times.



VI. CONCLUSION

In this work the problem of multi-robot task allocation is
studied under high latency and unreliable communications.
Two task allocation methods are implemented and experi-
mentally tested. Comparison between the methods can show
the benefits of each and the effects of the communications
limitations to task performance. The methods were tested in
a simulated underwater archaeology mission scenario where a
heterogeneous fleet of AUVs located, inspected and classified
potential archaeological artefacts. Coordination was achieved
using a simulated communications channel that allowed a user
defined latency and error rate. Results indicate that the k-
Means method is more suitable for lower error rates. It is
the most time efficient and the robots have to travel less or
equal to the other methods. In higher error rates the mTSP
method is preferable as it requires almost the same time as the
k-Means but produces better results distance-wise. The greedy
method underutilises the team with robots remaining idle. This
allows it to produce optimised results regarding the distance
the robots have to travel but with a cost in mission execution
time.

An extension to this work would be to use a multi-depot
multiple travelling salesmen formulation. This would capture
the dynamics of the mission better as it considers the current
position of the vehicles and could produce more optimised
results. Another interesting aspect would be the application
of methods used in heterogeneous vehicle routing [19]. This
would allow a heterogeneous team of robots to perform various
tasks in an optimised way, as it would capture the different
capabilities of each robot in the cost function.
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